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WA2-1O:3 0
MINMAX CONTROL OF SYSTEMS WITh UNCERTAINTY IN THE

INITIAL STATE AND IN THE STATE EQUATIONS 1

W, E. Sch~jtendorf
Mechanical Engineering Depar tment

N.”~thwestern University
Evanston, Illinois 60201

Abstract app licable when the cost function has a saddle
point. However, examples show that often this is

In this paper, optimal control problems not the case and the second sufficient condition,
where there is uncertainty in the initial state Theorem 2, can be used when there is sac dle
measurement or where there are uncertain point solution.
parameters in the state equations are investi- In obtaining the second sufficient condition ,
gated. It is assumed that nature will choose the initial state uncertainty problem is trans-
the uncertainty to maximize the cost which the formed into a problem with known initial state but
controller is attempting to minimize. Thus a having uncertainty in the stete equttions. Thus
mirmlax control is sought, the result is also applicable to problems where

Sufficient conditions for a control to be the mathematical model contains uncertainty i~ the
a minmax control are presented. These condi- differential equation describing die ~vnlutlc . o~
tions suggest methods for finding the minmax the state. Both sufficient conditions suggest a
control and such techniques are described. The method for constructing a minmax control and these
application of these methods is illustrated by procedures are described.
example problems. initial state uncertainty problems have been

•1 studied in Ll] where a general result for the
lineac quadrati..~ case is obtained. Our results

1. Introduction are not Limited in applicAtion to such problems.
The minmax approach to uncertainty has also been

In an optimal control problem , only uncertain investigated in [2)-E8J . The results presented
measurements of thc initial state may be available here are different and appear to be applicable to
rather than knowledge of the exact initial state, a wider class of problems thsr. those considered
One approach to this problem is to obtain a sto- in most of these papers since the assumption of
chastic description of the uncertainty and choose the existence of a saddle point solution is not
the control to minimize an expected value. Here required in Theorem 2 nor are the results limited
the problem is treated in a different fashion. It to linear quadratic problems.
is assumed that from the measured initial state it
is only possible’ to conclud.~ that the true in4rial 2. Problem Formulation
state belongs to some subset of the state space,
The objective is to choose a control , bz~ ed or, th is Consider a system which can be modeled by

-~ - measurement , which minimizes the maximum value of ordinary differential equations
• the cost over all possible initial states in the

k(t) = f(x(t),u(t)), t€~~t ,t J (I)subset. Thus it is assumed that nature is perverse o f
and chooses the uncertainty to maximize the cost
which the controller is attempting to minimize, where x(t) € R° is the state , u(t) CR

m is the con-
trol and the time interval [t ,t 3 is prescribed.For each control there is a guaranteed performance o f

‘ 
(which is determined by assuming nature maximizes A measurement ol. the initial s t .~t... , x , i s  avail-

outagainst this control) and the optimal control is able and is related to the true initial st a ~ c ,the one which achieves the bes t guaranteed per- x(t ), byformance,

0 ‘~ fl -
• I uncertainty, H the set of admissible controls and

If Q is the set of possible values for the x(t ) — x + q (21

J(u(.),q) the cost functional , then the problem is where q C Q c R° and Q is known . If q were known
* exactly, then we would have the usual optimalto find a u (.) c r11 satisfying for all u(’) cii trol problem. Here, however, we assume that q is

* not known exactly but is chosen perversely bysup J(u (‘),q) ~ sup J(u(.).q) nature .qCQ q€Q A control u(.) will be called admiesible if
The first sufficient condition , Theorem 1, is it is piecewise continuous and u(tj CU for all

tC~~t ,c 3 where UCRm is a given set. The set of4 - ‘The research was supported by the Air Force Office ° I
• of Scientific Research under Grant AFOSR-76-2923 admissible controls will be denoted by L. We

I
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*shall assume throughout that for every u(.) € fl and *
q C Q  there is a solution of (1) and (2) on Ct ,tf

). ~ ~h(a~~ ~~~~ 
)

+ ~ 0 — O
UI ~The cost or criterion depends on the choice of the 

*
• control u(.) and the parameter q. I — ~.i :C~(q ) = 0)

r.
tf ii) ~~~ (~ii~q + ~ pjCj(q)) ~ 0 V q€R°J(u(.),q) ø(x(t1)) + L(x(t),u(t))dt (3)

“I
0 and if there exists an absolutely continiioua*

* 
The problem is to find the optimal control , function ~(‘) : ~t~~ t

f
) -. R~

’ with ~(tf) 
~~~ø(x (t1))

U (.), based on the measurement x when the opti-on such that
mali ty criterion is mininax, i.e., f ind  an adinissi-

• * 
iii) A L(y,v) + ~T(t)f( ) - L(x (t),u ( t ) )

ble control u (~) sa ti s fy ing
* - ~

T
(t)f(X

*(t) , u*(t ) )  +
sup J(u (.),q) ~ sup J(u(.),q) (4)
qCQ qCQ n

for all u(.) cii. 
V yCR , V v€U and for almost all t€~ t ,t 3o f

*where x (t ) is the solut ion ofOne approach to the problem would be to deter-
mine ~ (u(~ )) satisfying for every admissible u(’) * * * * *

~~ (t) = f (x (t),u (t) ) ,  x (t ) — x +q
o on

• J(u(.),~~(u(~ ))) � J(u(.),q) V qCQ 
*

then u (.) is a minmax control.and then determine the admissible control which
Proof. Conditions (i) and (ii) imp ly h(q) a

minimizes J(u(.),~~(u(’))). This approach, however, — —  
* * *• is not feasible because of the difficulty in deter- h(q ) V qcQ or J(u( (‘),q) ~ J(u (.),q ) V qCQ.

m ining ~(u(’)). Following [9], condition (iii) imp lies
Alternatively, one can assume q is fixed and * * * * *J(u (.),q ) � J(u(.),q ). Thus (u (‘),q ) is af ind ~i(.,q)  sat i s fy ing  for all qCQ saddle point solution and, since all pairs

~ J(u(.),q) V u(.) Lii *
(u(.),q) with u(’) e~ . and q€Q are playable, u (.)

If q°€ Q maximizes J(i~(,q),q), then a(.,q°) is a is a niinrnax control.
Condition (iii) of Theorem 1 is used to show

candidate for the minmax control. Wh i le it may be 
* * *possible to perform the above steps , the resulting that J(u (~),q ) � J(u(’),q ) for all u(S) €~T .

0 Rather than using a simple sufficiency approach
control , ~i(’ ,q ), can only be the minmax control if one could use a field theorem such as ~lO ,ll3 toJ(u(.),q) has a saddle point solution, i.e., there 

* * *
is a (u°(.),q°) satisf ying show that J(u (‘),q ) � J(u(’),q ). If this is

done, the assumption that ø(.) is convex can be
o o a dropped.J(u°(~ ),q) ~ 

J(u (‘),q ) ~ J(u(.),q This theorem suggests the following procedure
for all u () €~~. and q€Q. This will not always be for finding a mirunax control.
the case for these initial state uncertainty prob— 1. Solve the necessary conditions for the optima l
lens. Judging from the examp les , what will usually control problem (l)-(3) assuming q is known.
occur in a problem is that for some values of x This yields ii(..q).om 

2. Evaluate J(~~(’,q),q).there will be a saddle point solution while for 
3. Maximize J(u(.,q),q) subject to C(q) ~ 0.others there will not.

0In the nex t sec tion , we present a sufficient Call the maximizing solution q
condition for a minmax control when there is a *4. Le t u (~) — G(.,q°) and evaluate h(q) =saddle point solution and in Sec. 5 a sufficient 

*condition which applies when a saddle point solu- J(u (.),q).
tion does not exist. In both cases , the sufficient 5. Check the sufficient condition of Theorem 1
conditions suggest a constructive method for find- *with u (.) as the candidate. This involvesing the minmax control. *

In the following,we assume f(.,’) : R~~XR
m _ .R0, finding a q and p satisfying (i) and (ii).

( .)  :R° H and L(.,.) :R n xRm - ‘Rare C’ func- 
In (iii), r1(.) can be taken as the multip lier
from the optimal control problem of Step 1

tions and that Q — t.q C(q) a o) where C(.) : R°-’R~’ *with q q
This procedure often works when there is at~ also 

saddle point solution for the particular X
om 

under
3. The Fir st Sufficient Condition

consideration but will not work when there is no

• Theorem 1, Suppose Ø ( ’ )  is convex on R°. Let 
saddle point solution. A simple example illus-
trates this technique .

• * *LI ( ‘ ) Ic admissible and h(q) — J(u (.),q). If 1

*there exists a q eq and a non-positive vector p J(u(’),q) — ~ x
2(l) + ~$ u2(t)dt (5)

such that 0
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1(t) — u( t ) , x(t ) — x + q (6) this form, the condition will also be a sufficient
0 cm condition for the initial state problem . Unlike

Q — IqI ~ iJ (7)  Theorem 1, this sufficient condition i. app licable
when there is no saddle point solution, Of course,

From Step 1 we obtain G(t,q) — - ; (x + q) and the suff icient condition also applie s to problems
- • i which can be formelated as (8)-(lO) and we alsofrom Step 2 J(u( . ,q) ,q)  — 

~ 
(x~~~+ q). The have a sufficient condition for optimal control

adjoint var iable in Step 1 is )~(t) — ; (x + q).  problems where there is parm.eter uncertainty in
the state equation s . Result s for problem . with• The maximization problem in Step 3 yields — 1 time varying uncertainty in the state equation s

if ~ 0 and q° — -1. if xom < 0. Then u (t) — are given in Cl2 , 13].

~i(t ,q °) — - 
~

(Xcm+l) if 0 while u*(t) — 5. The Second Sufficient Condition

• - .~(x -1) if x <0 .  Also h(q) —~~(x +1) 2 + Consider the problem (8) - ( l O) .

1 2 1 
cm am The orem 2. Suppose (i ( . ,q) is a convex function

- 
- 

~(x +q) _
~~(x~~+l)(x~~+q) if Xcm~~

O and h(q) — of z on R~’ for all q and let u*( . )  cii . I f the re
1 2 1 2 1 exists—(x -1) +—(x +q) -—(x -l)(x +q) if x <0.4 cm 2 cm 2 cm cm cm a) a positive integer ‘i’

If x � 1, the sufficient condition of icm 
* 

b) vectors q , I — 1,... ,y
Theorem 1 are satisfied with the above u ( ‘) end c) absolutely continuous functions

q* — ~~~ p — - (x +l), 8(t) — .
~~ 

(x
0111
+1) while X1(.) : [t

0
,t
1
) — ~~~ ~ —

if � -1. they are satisfied with u*(.) and d) scalars cr~ >O , i — l,’’’,V with E- sr~ — 1
q — -1 , p — 

~~ 
(Xom_1)i8(t) — 

~ 
(x~~ - 1). For such that 

* 
i—i

—l < X < 1, the sufficient conditions cannot be ~~(z~ (t ),q t)

satisfied and we suspect that th~rs is no saddle ~ k (t i) — ni ~~ 
i • 1,’ ‘‘,‘~

point solution when -l < x < l,~ In the next where 5i*(,) is the trajectory corresponding
ssction. we present a method for treating such * i
situations , to (u (.),q ) 

*
ii) q SC (u ( ‘) ) ,  i — 1,... ,y where £(u ( .) )  —

4. A Transformation : qcQ and J(u*(.),q) — sup

We shall derive sufficient condit ions for
mirmax control when there is no saddle point solu- a M ( w 5 + E Xi (t)k( i w i

)tion by considering an equivalent problem . ~‘ ‘ ~~~ 
1—1Let z(t) — x (t)-q and

k(z( t) , u( t) ,q)  — f(z(t) + q,u( t) )  
— a M(z i*(t) , u*(t),qS

— ø(z(t1
) + q) i;l 

~ * ~M(z( t) , u (t) ,q) — L(z( t) + q,u(t)) — E X (t)k(z (t),u (t),q )
Now consider the optimal control problem i—I

1(t) — k(z(t),u (t),q) (8) 
+ ~ ~i i i *~~~, ~ 0

z(t ) — x  (9) i—l
0 cm 

tf V yiCR~
i
, i—l ,2,.’’,’y,

M(z( t) ,u(t),q)dt (10) V usU and for almost all tc[t0,t1]
to then u*(.) is a minmax control.

• The original problem has been transformed from i
Proof. Consider any u(’) and let z (‘) be the• one with initial state uncertainty to one with m i -  —

tial state known , but with an uncertain parmeeter trajectory corresponding to (u(.),q ) satisfying
• • in the state equations and cost. For any u(.) cii i

(t ) — ~ • Then
and qCQ, K ( u (.) , q )  — . J( u ( . ), q ).  Thus if u*(.) j~ 

0 cm 
~

._ _ _ ••_

a mmcmix solution to (l)-(3) then u*(.) is also a 
•

~‘ - ~~-~

minmax solution to (8)-(lO),
In the next liction , a sufficient condition - - -

for a control to be a mmcmix control for the pr ob- - .
.

lea (8)-(lO) will be presented. Since any initial • 

• 
- 

V
stats uncert ainty proble m can be transformed to

In Sec. 5,we show that this suspicion ii confirmed , • -

- 

I~~~~~ 

,,, 
j
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or,i i i 
* IO~ Ea~M(z~(t),u(t),q~)+ L X  (t)k(z (t),u(t),q )

sup J(u(~),q) ~ J(u (‘),q )i l  i—I q€Q
‘1 

~* * j  
ince qie.E(u*(.)), J(u*(.),q

i) — sup J(u (.),qi
)- 5 a M(z (t) ,u (t) ,q ) S

i—l qcQ
and the theorem is proved.

* This theorem suggests the following method
- E Xi(t)k(zi*(t) u*(t)q5 + L ~~(z~ (t)-z~ (t))  for finding a mirunax solution when there Is no
i—l 

saddle point solution.
V V 1. Transform the initial state uncertainty prob-i* * i

— 5 a
1M(z~(t),u(t),q~

) — ~ n~M(z (t),u (t),q ) len into the form (5)—(7).
i—l i—l 2. Choose a number V ~ 2 and vectors q

i~Q
i — l ,.’’,V.i 1*V d Xi(t)(z (t)-z ( t) )  3. For this choice of ~ and q

i , consider the
optimal control problem

In tegra ting the above inequality from t to to f ’  t
using (i) and the fact that z1(t ) — zi*(t ) .  the 

~ 
(z1(t~ 

£ i (t) u(t) qi)dt]o a K(u(.)). Sn ),q )+ M(z
above inequality becomes i.l

0

~ (t) — k (z Ct) ,u(t) ,q ), z (t ) — x i~ I,... ,~
i i i  i iV r~ jo � ~ a

1
M(z (t) u(t),q’)dt o on ’

i—I t where the are as yet undetermined .o t
V r ~ ~* * 

q~ )dt 
4. Usc the necessary conditions for this optima l

- a~M(z (t),u (t ) ,  control problem to determine a candidate
i=l~~ t0 u(t;01,... ,o\).

V ~~(z t 
(t

f
),q)

* 
i* 5. If possible , choose 

~~l , , 0
V

) so that for
+ 

~ ~z 
(z1(t1) -z (t f)) (11) all i ,jc~ l,... ,V)1=1.

S 
t

~From the convexity assumption and the fact that ,(z’(t f).q 
) + M(z i

(t).u(t),q5dt
> 0, 1 l ,~ ’’,V

i y t
S n  ~(z ),q ) - n ..(z (tf

)_q i) 
— ~ (z~~( t ) , q ~ ) + ~ ~M(z~ (t) , u(t),q~ )dti—I 1 i— I 

~t1* i 0

____________ i*V 3~ (z (t f),q (z i (t
f
)_Z (t

f
)) (12) 6. If such (nl,.~~~

,nV
) ex is ts wi th a~ > 0,

i — i
l 

V *
Combining (11) and (12) leads to 1 l,’”,y and 1 a1 

1, let u (t) —

i—i

r r u(t;al,...aV) and check the sufficient con-a~~.(z (tf),q ) + M(zt (t),u(t).q
1)dt ditions of Theorem 2. The functions X

1(.) can
i•’i t be taken as the adjoint variables from the0

problem in Step 3. To verify (ii), one must
t 

*1* 1r f j * * i evaluate h(q) = IC(u (.),q) and show that qS a ,(z (t
f
),q ) + M(z (t) ,u (t),q )dt j  = l,.’’ ,V maximizes h(q) subject to C(q) ~~0.i—i i~ t0 7. If no a1, I — l,.”,V can be found with

VSince — 0 , 1 — l ,...,V , there exists an i — l,’’~~,V and — I, return to
t~~ l ,...,y } such that i—l

Step 2 and choose a new set (~y~qi)~t What makes this technique difficult to apply
+ 

f 
M(zt (t),u(t),q

1)dt i is that there is no apparent technique for making
ia good choice of V and the vectors q in Step 2.

t • It may be necessary to try many combinations
* i before the method will be successful. Neverthe-1*,(z (t f),q~ ) + - M( z ( t) , u (t) ,q )dt less , the method is a pos sible one for f ind ing

t minmax controls and, except for a special linear0

or , quadratic case , the only one known to the author.
* i We next apply this technique to the simp le

J(u(.) q t ) ~ J(u ~~~~ e xamp le of Sec. 3. After app lying the transfor-
mation to the problem (5)-(7), we have

3

—a-
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2 1 r1 2 While this is a linear quadratic problem, it
K(u(’),q) — (z (l)  + q) + u (t)dt cannot be solved by the methods of ~l] since Q is

0 not in the form required there. If q is known ,
1(t) — u, z(o) — x , Q — j q  ~~ a 1) the optimal control is

on
24 (x 1~~ + q 1) + l8(x 2~~ + q 2)

In Sec. 3, the minnax control for x � I and 
~i(t,q) 29 (t-l)om

• x ~ -i was found . Here we consider -l<x <1.
cm am 6

Since q is chosen to maximize K(u(.),q), we expect + 
(x 1~~ + q

1
) - l0(x2~~ + q

2
)

q to be on the boundary of Q. Thus we choose V 2 , 29

~~ 1 2
• q — 1, q — -1. With this choice, the optimal and

2 14control problem in Step 3 becomes 
— 4~ 

(x 1~~ + q
1

) + ~~ (x~~~ + q
2
)
2

K(u(.),01102)~~~~~1(z
1(l)+ l)2+~~01 S

l
u 2 t~~t 18

+ ~~ (x 1~~, + q
1

) (x
2~~~

+ q
2
) ( 13)

+ ~~~2(z
2
(l)-l)

2
+~ 02 ~ u2 t)dt 

procedure outlined after Theorem 1. The q which

Consider first x1~~ — 10, x2~~ = 10 and use the

1
1 

= u — u , z1(o) — z2(o) 
— x maximizes (13) subject to q€Q is q° — and

am
and minmax candidate is

From the optimal control necessary conditions,
0

1 _i_l d then 
u
*
(t) — ~(t,q°) 

462 506
— - — x  + anwe obtain ’

~(t;a1,a2) 2 on 2
Wi th this control ,

l + x  l-x
from St e p 5 0

1 
— 

2 
cm 

— . Thus , h(q) — J(u
*(.),q) — ~~ (~~~ + q

2
)
2

*the minmax candidate is u (t) - x • Note that 1 404on
this can only be a candidate when Ix I ‘ 1 since 

+ ~ (~~~
— + q 1 + q

2
)
2 
+ 55.536

u(t) is constrained to satisfy I u ( t ) r  a 1. * * *This u (‘) and h(q) along with q1 — I. q2 
— 1 ,

Using Theorem 2 with
231 253

* 1 2 p
U Ct) — -x , V — 2, q — I, q — — l 1 

— — 2 9 ’  ~2 — - 
~~~~~~~ 

d 1(t) — and f 2 ( t )  —

ole
- t + satisfy the sufficient conditions of

l+x x -l l+x l-x *
_____ 

on cm ore Theorem 1 for x1~~ 
— 10, x2~~ 

— 10. Thus u I t ) —X1(t) — 2 X
2
(t) - — -~~

—-—, 0
1~~ 2 ‘ 

0
2
_ _

~~
__ 

462 50
conditions (I) and (iii) are readily satisfied. 

t - is the minmax control.
Next consider the case when the measured

1 2 initial state values are xCondi tion (ii) I s  also satisfied since h(q) — ~ q lOm — I, x2~~ 
— 0. If

+ -
~ x2 and q1 — 1, q~ — -l both maximize h(q) one app lies the Theorem 1 technique , no infor-

on nation is obt*ined since the solution obtained
subjec t to ~qj  a 1. this way fails to satisfy the sufficient con-

Combining this result with that of Sec. 3. we ditions of Theorem I. Thus we approach the prob-
can conclude that the minmax control is 1cm through Theorem 2. The transformed problem is

I 1
1
(t) —z

2
(t) +q 2 , z1

(o) — 1 , 12(t) —u(t) , 
z
2(o) — 0• 1  x +1) if x

“ , 2 an cm

H *u ( t) — x if 1 <  x < 1 K(u(.),q) -4 (z1(1)+q 1)
2+ (z2(1)+q 2)

2 
+

ore 
- am

I i (x -1) if x ~ It is expected that the q vector will be on the
2 am on boundary of Q and thus we try some combination of

the four vectors

r i _i r u  r-1 -1furt 
The results presented above are illustrated

her with the examples in the next section. q 
J 

q — 
L•l • q — j • q — 

-l

4. Examp le Problems 
— 

- - 
I ~ 2 -l ~We choose V 2 and q L i  , q

-— (l)+ x ~(l))+~~ u
2
(t)dt (Other possibilitie s include V — 2, 3 or 4 and a

o corresponding number of vectors from the above set

‘ 
Example 1. J(u(.),q) ~ (x~

of four vectors.) For this choice , the optima l
x 1 — x2, x 1 (o) ~~ l +~

C lOm I 12 u , x2(o) q2 + X
2~~~ control problem of Step 3 in Sec. 5 is

—
(I — : q~ - 1 a 0 , q~ - 1 a 01
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from the necessary condition for nonlinear pro-I r 2 2 -
— 

~ 
0~ (z

1
(1) + 1) + (z

2
( l ) +  1) gransning pro b lems and evaluating J(u*(.).q) for

these candidates.
.1 

2
+ -

~~ a1 u (t)dt+~ a2[(y1
(l) - 1)2 Thus all the conditions of Theorem 2 are

* 3o satisfied and u (t) — t - is a minmax solu-

~~ 2fl 1 
.1 2 tion when x — 1, x2~~ — 0.

• + 
~~2

(1
~ 

- 1) 
~~~~~~ 

a2 u (t)dt This result was obtained by guessing V — 2 ,
0 1 r1~~ 2 E - l _ iq — 

- 1 
, q — 

~ 
. If instead we choose

— z2(t) + 1, z 1(o) — I; ~‘1(t) — y2(t)—l . y1(o) — 1
1 r l~ 2 1 1  l 1 l ~~V — 2 , q — L i • q — or q

u ( t )  , z2(o) — 0 ;  p2 (t) — u ( t )  , y2(o) —O 2 r _ 1~~
Fol l owing Step 4 the solution of this optimal con- q +l ~ 

• we find that a~ 
and 02 do not satisfy

trol problem is 0
1 

> 0, > 0 , + 0
2 

— I. Thus the choice of

~ (t ,n 1,~ 2
) — h (9~~1-3~~~- a 2-3~~1

o
2)(t-l) 

V and qi is c ruc i a l  and several choices may have
to be tried before the minmax solution can be
found.I (48ol~

50o
~
_lOa

2~
50a

l
a
2) Suppose one assume s the measured value of the-

~~~~~~ initial state is exact and finds the optimal con-
99 15and f rom Step 5, a1 114’ 

02 — T1~ 
Since 0

1
>0, 

trol u C.) under this assumption. Then, whenopt

0
2 

> 0 , 01 + 0 2 — 1, a minmax candidate is x1~~ — x2~~ — 10 , sup J(u 0~~
( .) ,q) — 184 .55 while

q eQ
the minmax value is 183.59. When x1~~ — 1 and

* — ( 99 1 5\  36 34
u It) — u~ t , —~ 114 ’ 114) = 

19 ~ - 19 x2~~ — 0, sup J(u~~~~(.)~~q) — 4.362 while the mm-

We now app iy the sufficient condition of qcQ
max value is 3.447. In the latter case a reduc-- *Theorem 2 with the above u (‘) and - t ion in cos t of over 20~. may be obtained by using
the mm mix control as opposed to using the opti-1 ri~ 2 ~~-l’- i’lZ ~~ - TT~’

15 V — 2, q — 
L ~. 

j  • q — L -l 
real control with the assumption that the measured
state is exact.

Example 2. Consider a spring mass system where
values of the spring constant lie in a known range— 

~~

7,324 

) + 17821 but the exact value of the constant is unknown.(114r —27 ,324(t—l
A force is applied to the mass and the objective

c2700 is to choose the force to maximize the position of
- the mass at the final time when the system starts

)jj4 )2 ~~70O(t-l) - 3150] from a known initial state with zero initial
velocity. The optimal control problem is

J(u(.),k) —

t - t + t + 2
11* 

— 

18 2 
] 11(t )  — x2(t) , x1(o) —[ 6 3 1 7 2

j’~~t T h t + l
— —k x1(t) + u(t) , x2(o) — 0

• r6 3 17 2 1
K — 1k: laka4~ , U — ~u( t) : u 2(t) - l’O)IT~ t ~~~~~t ~~

2* 

118 2 
- - j and k is the spring constant . An optima l control

P ) t ~~~~ Here we have assumed the mass is unity, tf —I L l i t  19 t 

*
U (.) is a control satisfying for all admissible

- u It is straightforward to verify that conditions *
(I) and (iii) of Theorem 2 are satisfied. To u(.), sup J(u (‘),k) ‘ sup J(u( ),k). If k — 1,

* keK keK
verify 1) 1), J(u ( . ) ,q) is needed , the optimal control is u(t) — +1, t c 0 ,T~~. While

2 if k — 4, it is
* 1’ 8 2

1(  16 \J(u  ( ‘) , q ) — ’~ -- j -~ + q 1+ q 2 1  — - j~+n 2~ 
+- .504 

~ — l , tc~0,-~)

* To ve r i f y ( i i)  it must be shown that — and 
u ( t )  - 

~ +l , t€(~~,~~• 2 r..1~~ *q — maximize J(u (~),q) subject to qCQ. This
• However since k is unknown, neither of these con-

can be done by noting that this nonlinear program- trols has the minmax property. Since the problem
ming problem satisfies the conditions guaranteeing is of the form (8)-(lO), Theorem 2 can be used.
the existence of a solution , finding candidates
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Following the procedure outlined after Theorem 3. Ragade , R. K. and I. G. Sarma , “A game theo-
2, a mimnax candidate is retic approach to optimal control in the pres-

(-1 ~~~~~ ~ ) ence of uncer tainty, ’ IEEE Trans. on Automatic

u*( t )  — j 
‘ ‘ I Control , Vol. AC-l2 , Aug. 1967 , pp.  395-401.

+1 , t~ (t1,rr] 4. Speyer , J. L. and U. Shake d , “Minmax design
for a class of linear quadratic problems with

where t1 is defined by cos t1 — ~ 3 -1 , 0<t 1
(~~. parameter uncertainty,” IEEE Trans. on Auto-

• matic Control Vol. AC-19, April 1974,• Using this candidate in Theorem 2 with
pp. 158-159.

V = 2 , k = l , k = 4 ,a = l ~~~.L~~, a 
i_

1 2 1 2 5. Salmon, D. H., “Minmax controller design,”
‘I IEEE Trans . on Automatic Control , Val .  AC-l3 ,

• [0 1 C05 t 1_02 cos 2t Aug. 1968 , pp. 369-376 .

X 1( t)  = , X
2
(t) = 

a 6. Pearson , J. 0., “Wors t -case  design subjec t  to1 2 linear parameter uncer ta in t ies, ” IEEE Trans .sin t ~~~
-
~--- sin 2t 

on Au tomatic Con trol , Vol. AC-20, Aug. 1975,

* pp. 167-169.
it can be shown that the above u ( ‘)  is a mm mix
cont ro l .  Condit ion ( i i )  is the most d i f f i c u l t  to 7 .  Slum , H. S ., “Mm -max feedback control of
v e r i f y  since it required showing that  k ‘- 1 and unce r t a in  systems , ” in D i f f e r e n t i a l  Game s and
k — 4 are solut ions to the nonlinear programing Control Theory edited by E. Roxin , P. T. Liu ,
problem of maximizing and R . Srernberg,  Marcel Dekker , New York 1974.

cos ..Ji~ (t -
~~~ 

- (I + .i~ Iu1~ ~ - 
1 8. Gutma rt , S., D i f f e r e n t i a l  game s and the asymp-

k 1 \2 k/  k tot ic  behavior of linear dynamical  systems in
the presence of bounded uncertainty, Ph.D.

subject  to 1 � k � 4. Thesis , Univers i ty  of Ca l i fo rn ia , Berkeley,
1975.

7. Concluding Remarks
9. Leitmann, G. and W. Schmitendorf , “Some suf-

The optima l con trol of sys tems wi th uncer tain f ic iency condi tions for Pare to op t imal con-
initial state measurements or with parameter uncer- trol , J. of Dynamic Systems , Measurement and
t a i n t y  in the state equations has been considered. Control , Vol. 95, Dec. 1973 , pp. 356-361.
The optmmality criterion was taken to be minmax.

For p obiems wi th ini tial state unce r t a in ty ,  10. Leitmann , G., “A note on a sufficiency theorem
the initial state rr~asurement space can be divided for optimal control ,” J. of Optimization
into two regions . In one region, the problem has Theory and Application , Vol. 3, 1969 , pp.76-78 .
a saddle point while in the other there is no
saddle point solution. Theorem I is app licable 11. S ta l fo rd , H . ,  “ S u f f i c i e n t  condi t ions for  opti-
when tIae initial state measurement is in the first mal control with state and control con-
region and Theorem 2 , while app l icable  for both st raints ,” J. of Optimization Theory and
regions , is more usefu l when there is no saddle Applications , Vol. 7, 1971 , pp. 118-135.
point solution. At present , there is no simp le way

• to de termine a p r io r i  if there is a saddle poin t 12. Schmitendorf , W, E., “Differential games with- —

~olution for the measured initial state under con- out pure strategy saddle point solutions ,”
• s i de ra t ion. 3. of Opt imizat ion  Theory and App l i ca t ions ,
4 For situations where there is no saddle point Vol . 18, No. 1, Jan. 1976.

solution , the ini tial state uncertainty problem was
trans formed into a problem with initial state known 13. Schmitendorf , W. E., “A sufficient condition
but with uncertain parameters in the state equa- for minmax control with uncertainty in the
tior.s. This allowed us to derive Theorem 2, and , state equ..tions ,” IEEE Trans. Automatic Con-

— in so doing, also obtain results which are app li- trol , Vol. AC-2 1 , Aug. 1976, pp. 512-515.
cable to problems that are mode led with uncertain
parameters in the state equations .
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